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Composite iterative learning controller design for
gradually varying references with applications in an AFM system
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Abstract: Learning control for gradually varying references in iteration domain was considered in this research, and a composite
iterative learning control strategy was proposed to enable a plant to track unknown iteration-dependent trajectories. Specifically, by
decoupling the current reference into the desired trajectory of the last trial and a disturbance signal with small magnitude, the
learning and feedback parts were designed respectively to ensure fine tracking performance. After some theoretical analysis, the
judging condition on whether the composite iterative learning control approach achieves better control results than pure feedback
control was obtained for varying references. The convergence property of the closed-loop system was rigorously studied and the
saturation problem was also addressed in the controller. The designed composite iterative learning control strategy is successfully
employed in an atomic force microscope system, with both simulation and experimental results clearly demonstrating its superior

performance.
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1 Introduction

Due to the merits of few system requirements and
perfect tracking performance, iterative learning control
(ILC) has attracted much attention in the field of control
theory and applications. It was firstly proposed by
ARIMOTO et al in 1984 [1] and some years later, more
efforts were devoted to the research of the stability (i.e.,
convergence) and the transient property (convergence
rate) of learning control systems. As a result, some
modern control strategies were migrated into the ILC
control structure to achieve better performance [2] for
different systems. However, as known, in practical
applications, the control system is usually perturbed by
some disturbances and many uncertainties existed in the
models, these factors thereby destroy the achieved
convergence properties. Furthermore, the sensor noise as
well as the variance in the actuating signal can also affect
the final control performance. Therefore, it is quite
necessary to study the robustness of ILC algorithms.
According to the forms appearing in the system, the
uncertainties and disturbances are categorized into two
types of iteration-independent and iteration-dependent.
For the former case, it needs to consider the problem of

how to design ILC algorithms to reach the desired
performance as far as possible. Actually, more efforts
have been devoted to the latter case. Firstly, researchers
discussed the robustness of some classical ILC learning
laws, such as proportional-integral-derivative (PID)-type,
forgetting factor based learning laws, and Q filter tuning
algorithms. Additionally, to further strengthen the
defending ability against system uncertainty and
unknown disturbances, some conventional robust control
techniques have been employed in the ILC control
architecture, such as H, controller in iteration domain
[3—4], wavelet-based iterative learning control [5] and
optimal stochastic ILC framework [6].

some

However, in most of previous works,

pre-conditions, such as the assumption that the
disturbance converges to zero in the iteration domain, are
essentially required to ensure that the control input goes
to the ideal one and the tracking error converges to zero
asymptotically. Otherwise, if the disturbance is
practically bounded, the tracking error can be only
proven to converge into a bounded range. It should be
noted that the desired trajectory is constant among trials
and a premise design principle of the existing methods is
to suppress the effect of the non-repeated disturbance.

Nevertheless, the desired trajectories are varying along
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the iteration axis. Considering this problem, we focus on
the tracking problem of slowly varying references in
servo systems. Under this situation, the difference of the
desired trajectories between adjacent trials is small, but it
becomes much more obvious after several trials. In this
case, the convergence property of the existing ILC
algorithms cannot be guaranteed. On the other hand, the
current reference can be split into two parts consisting of
the reference of last trial and some small disturbances,
which leads to different ideal inputs for each trial and
brings additional challenges for convergence analysis. In
the literature, SAAB et al [7] first discussed this problem
under the assumption that the varying trajectories are
known or can be measured online. In Ref. [8], the
authors proposed a new parameter adaptive law for
different tracking tasks. By wusing internal model
principle, the higher order learning algorithms are proven
to be effective to deal with iteratively varying reference
trajectory in Refs. [9—10].

Unfortunately, in the aforementioned researches, the
varying reference trajectory or its pattern is required to
be exactly known, which is too rigorous for practical
systems, especially for many servo systems. Actually, we
consider this problem from the application background
of an atomic force microscope (AFM) system [11-13].
Under the raster scan mode of an AFM imaging system,
a small tip is scanning over a preset sample line by line,
while a controller is used to keep the tip-sample distance
constant [14—15]. Therefore, in this system, the actuator
should follow the unknown sample topography with high
speed and good positioning precision [16]. However,
there usually exists little variance between lines of the
sample, hence it can be regarded as one of learning
control systems discussed in the previous paragraph.
Indeed, the idea of employing the information of last line
to improve the tracking performance was first presented
in Ref. [17]. Unfortunately, the previous control input is
only utilized as a feedforward part without any
theoretical analysis on whether it plays a positive role to
enhance system performance. To utilize the previous
information sufficiently, a feedforward ILC controller
was designed [18], and it was combined with a feedback
controller to reduce the tracking error. However, the
convergence condition is derived under the assumption
that the sample disturbance is invariable during trials.
Though some experimental results of scanning the same
line repetitively are obtained, the performance of
scanning an overall image is not so good as expected. In
addition, due to the limited range of the sensor
measurement, the output saturation may occur in AFM
systems [19]. Thus, it is also desired to study the ILC
controller design approach with input/output saturation.

In this research, after summarizing the system

characteristics, a composite iterative learning control
(CILC) algorithm was proposed for iteratively varying
reference trajectory, and then H, optimization method
was employed [20] to realize the control algorithm for an
AFM system. After some rigorous study, the largest
variance between adjacent iterations to ensure the
positive effect of the learning part was obtained in the
sense of L, norm. Moreover, the L, norm of the tracking
error is proven to converge into an acceptable region.
Additionally, the output saturation is strictly considered
in the design process of the proposed CILC scheme.
Finally, the algorithms are implemented on an AFM
system. Both simulation and experimental results show
that the proposed CILC algorithm performs much better
than the currently utilized conventional proportional-
integral (PI) control law, thus, it is very promising to
enhance the AFM imaging performance remarkably.

2 Problem formulation

Consider the following single-input-single-output
(SISO) linear system:

Y(s) = G(s)U(s) (1)

where Y(s) and U(s) are the Laplace transforms of the
system output y(¢) € R and input u(¢) € R, respectively,
while G(s) represents the system transfer function. The
control objective for system (1) is to ensure that the
output y(f) tracks the
trajectory y, , (1), k=1, 2, ---, in a specific time interval

iteration-dependent desired

t €[0,T]. Since the desired trajectories are assumed to
be unknown and slowly varying in the iteration domain,
the difference d,_,(¥) € R between adjacent iterations is
defined as

i1 ) =Y, i ()=, 4 (1) (2)

It will be further utilized in the subsequent
controller design. It is significant to point out that, the
variance of references between neighboring trials is
comparatively small. However, the desired signal
becomes much different after a number of operations.
Therefore, different from the traditional ILC systems
disturbed by some iteration varying uncertainties, there is
no uniform desired input which regulates the tracking
error around the equilibrium point for all iterations.

To facilitate the iterative learning controller design
in frequency domain, the following norms for transfer
functions and signals are defined, which will be further
utilized in the convergence analysis. Firstly, the L, norm

of the signal f(¢) e R, t €[0,T] is expressed as

1/2
lrol, =, (@)
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In addition, the H,, norm of transfer function 7(s) is
defined as

|T(s)], =sup{T(jew)}
Considering the fact that the transfer function H,

norm is the induced norm corresponding to the L, norm
for signals, the following result will be employed in the

subsequent analysis. If x,(t) =T(s)x,(¢), x,(¥) €R,
x,(t) € R, then
2@, <T@, ©l, 3

In addition, to describe the signal transmission
explicitly, all the signals are expressed in the time
domain, with the only exception that the transfer
functions are defined in frequency domain.

3 Composite iterative learning controller
design

To achieve the above control goal, the composite
iterative learning control strategy combining feedback
and feedforward terms is proposed as shown in Fig. 1,
where Cgp(s) and Cgp(s) are the feedforward learning
control law and feedback controller, respectively. For the
iteration indexed as number (k+1), the system output and
control error are expressed as () and ep(?),
respectively.

Fig. 1 Control block diagram of designed CILC scheme

The control input u(f) of the (k+1)-th trial is
composed of two parts:

Up gy (1) = tpp gy () + tpp 41 (2) “4)
with the feedforward learning controller as

Upp a1 (1) = 1y (1) + Cpey (7) (%)

To complete the control objective, the following
design criteria are proposed to design the feedforward
and feedback parts:

1) This composite controller can achieve better
performance than that of pure feedback or feedforward
algorithm;

2) The L, norm of the controlled error can finally
converge into an acceptable region;

3) When the reference is not varying with iterations,
the L, norm of the error can converge to zero

monotonically;

4) When the measured output is saturated due to the
sensor measurement range, the previous properties still
hold.

According to the above principles, the subsequent
subsections carefully study the performance of this CILC
scheme as well as its convergence property and
implementation technique.

3.1 Comparison with case of pure feedback or
feedforward control
The references of the learning control system are
varying with iterations, hence it is essential to study
whether the learning term plays a positive role or not in
In this
comparison between the proposed composite control

the closed-loop system. subsection, the
mode and the individual feedforward/feedback part is
discussed, and a guideline whether using the CILC
controller or not is presented subsequently. To achieve
this goal, the control error under the proposed algorithm
with iteration number of (k+1) is expressed as

e, () eR and

€t =Y, 41 (D) =V ) =Y, (D) —

GCry G
_J-FB ) ——— )=
14 GCyp yr,k+1( ) 14 GCrp ”FF,k+1( )
_— H+d 1)) —
1+GCFB (yr,k() k+l())
— O (U 1)+ Copey (1) =
1+GCp FEk
1 GC,
_— t)—Gu, (t ——FFe )+
1+GCFB(J’r,k() ©(©) 14 GCpp (1)
1-GC,
————d, () =——F e )+
1+ GCrp 1+ GCpp
1
—d, . (t 6
1+GCFB k+1() ()

In addition, the control errors of individual feedback
and feedforward strategy are described as ¢';, () € R
and ¢";,1(¢) € R, respectively

1 1
1+ GCpp 1+ GCyy
di 1 (1)) (7

e ) = Vegn1(0) = i (D) +

" k1) =Y, 1 (O =y (1) =
Yy gt (0) = Guigp 4 (1) =
s O +di (D)= G(uy (1) + Cpey (1) =
(Y, (O = Guy (1)) = GCppey (1) + dy (1) =
(1-GCrp ey (1) +djy (1) )

The following theorem is presented to describe the
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superiority of the CILC over the other two methods as lex @, < e, (15)
well as the necessary condition for the variance of ’ ’

iteration-dependant references. for any k=3, -, it is straightforward to conclude that

Theorem 1: For the learning control system Eq. (1)
with varied references Eq. (2), if the control law Eq. (4)
and the reference variance satisfy these conditions:

1
1+ GCpy

0

[ /(1+ GCrp),
Yk (/14 GCry )

1
<

L 2

2o, 22

A (1)
1+ GCpp

yr,k (t)
1+ GCpy

h

where L(s) =(1-GCp)/(1+GCrg) denotes the error
transfer function in iteration domain, and d, (¢) is
defined in Eq. (2), then the control performance of the
composite ILC controller is better than that of only
feedback or feedforward control in the sense:

lecn @, <le'sa®ll,

(10)
"ek+1 (f)||;2 < ||e”k+1(t)||12

Proof: To prove Theorem 1, firstly express the L,
norm of the (k+1)-th trial tracking error as

L(s)ey (04—,

11
1+ GCpp (ty

||ek+l(t)||lz =
b

Moreover, utilizing the result of inequation (3) and
the condition of inequation (9) yields

A (1)
1+ GCpy

<
12
|4, (/1 + Gy, )
e, +
P00+ GG, 57
dpr (1)
1+ GCpy

lexr O, <L Jlee @], +

(12)

12
In inequation (12), if the L, norm of the k-th trial

control error is less than that of only feedback control

Y r.k (t)

| 13
1+ GCpp (13

e« 1, <l =

b

then, by substituting inequation (13) into inequation (12),
we have

it d, . (t
e, < 222 1O ) | den® |
L1+ GG |, |1+ GChy ),
2 2
Vrk @) +diy (@)
- =l t 14
aan | el (14)
2

Therefore, in case of the assumption that

||ek +1(t)||l < ||e’ P +1(t)||l . To verify this assumption, e,(?) is
rewritten as ’

1-GC,

e ()= e (1) +
1+ GCep
1-GCpp 1
1+ GCpp 1+ GCyp

dy (t) =
1+ GCpy 2()

1
+————dy (1) (16
Yra(0) +GCom 21 (16)

Taking the L, norm of Eq. (16) obtains

1 1
llex )] = L(S)myhl(th L
Lo |20 o | an)

H1 +GCr ), 1+ GCpy “l

By utilizing the condition in inequation (9), it gives

| (0)/ 1+ GCry)], 1 Vra (1)
fea€] 1- | v
v (/1 + GCFB)||12 jlil+ GCra]),
dy®) | _| 2@ | | d0 | _
1+ GCpp L 1+GCry L 1+ GCpp 12_
V1 () +dy (1)
Sl 22 e (0) (18)
1+ GCpy I "e ’ "12

It implies that the assumption inequation (15) holds.
Therefore, [le, (0], <[e'x()], ~indicates that the
composite ILC strategy makes the system (1) track the
varied trajectory more precisely than that of feedback
control under the condition inequation (9). Furthermore,
the proposed control scheme is inspected with the
conventional ILC structure without feedback term. To
this end, the L, norm of e4(#) is taken and the resulting
expression is manipulated as

(1 - GCFF )ek (t) + dk+1 (t) " <

||ek+1(t)"12 - 1+ GCrp "12 )
1
oo | l0-6Cma®+diaol, =
1
e e "

According to the condition inequation (9), we know
that ||ek+1(f)"; < ||e"k+1(f)||, . Therefore, the control
2 2

performance of the proposed CILC approach is also
better than that of traditional no-feedback ILC scheme.
Theorem 1 provides a judging criterion for when
the composite iterative learning controller can be
employed to deal with the problem of varying references.
That is, when the variance between adjacent trials is
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small compared with the base references (condition
inequation (9)), the proposed CILC strategy can be
employed to achieve better control performance.
Remark 1: To make the condition inequation (9)
hold, both the feedforward learning law Cgg(s) and the
feedback part Cgp(s) need to be elaborately designed
based on the behavior of the varying trajectory. That is, if
an almost inverse controller is ideally adopted for the
feedforward law Cgg(s), then the error transfer function
L(s) is close to zero, which then provides much
flexibility for the design of the feedback part Cgg(s).
However, as this design methodology is difficult to
implement for practical systems, suitable feedforward
term Crr(s) is usually proposed to compensate for the
dynamics of the G(s) at interested frequency region.

3.2 Convergence analysis

In this subsection, the convergence property of the
proposed CILC strategy is studied. And the following
theorem is suggested to present the convergent
performance.

Theorem 2: If the control system Eq. (1) satisfies:

1) The control law consisting of Cgr and Cgp is
designed in accordance with inequation (9);

2) The L, norm of the variance between adjacent
references is bounded by a small positive constant

geR", thatis

Vk=2, |de @), <e

the learning system Eq. (1) converges in the following
senses:

1) The tracking error in each iteration is L, norm
bounded;

2) When k£ — oo, ||ek (t)”l2 enters into an appropriate
range;

3) If the reference in iteration domain is constant,
the tracking error decreases monotonically with
iterations, and it finally converges to zero.

Proof: Firstly, the tracking errors during the first

and second trials are given as

1
)=———y.,(t
e () 1+ GCrg yr,l( )
1-GC 1 20)
e ()= e (1) + d, (1)
1+GCpp 1+GCpp
Similarly, e, (¢), k=3, 4, ---, are expressed as
k-1 k-2
1-GCpp 1-GCpp
ek(t) = [I—FF_ el(t)+[—FF; X
+GCp ) 1+GCrp )
—d, () + -+ ———d, (¢ 21
1+ GCpy (1) 1+ GCpy K0 @b

Taking the L, norm of Eq. (21) yields
lecoll, <L e @l +

el

1
e ok

1
1+ GCpy

2@, < L@ e, +

(L2441 €=

1
1+ GCpy "

_ 1 1
I e, +—=

— 22
ol roce)”  *?

0

Since all the terms appeared in the above equation
are bounded, ||ek (t)||l is also bounded. Furthermore,
2
when k— o0,

1

— 23
1+ GCpy @)

1
D € ——m—
b0l = S,

0

Thus, with increasing iteration number, the tracking
error gradually enters into the range given in inequation
(23). It should be noted that when the desired output is
iteration-independent which implies that &=0, then
inequation (22) is rewritten as

lec @l I e @, @4

In this case, the tracking error converges to zero
monotonically in the sense of L, norm.

3.3 Study for output saturation problem

As stated in the introduction part, the control input
in some situations may exceed the effective actuating
range. In addition, the control error may also go beyond
the sensor scope. It is named as input/output saturation.
Without loss of generality, the sensor saturation is taken
as an instance in this work to verify the effectiveness of
the constructed CILC control law when saturation
happens.

Firstly, the saturation function is defined as

€, e (1) 2 ¢
Sat, (e(1)) =1e (1), —¢y <e,(t)<e (25)
—€y, ¢ (1)< —¢
where e, is a positive constant representing the
maximum value that can be measured by the sensor. To

facilitate the analysis in frequency domain, the saturation
nonlinearity is re-expressed by the describing function as

2)

2 e € e\
N(A) ==aresin 2+, [1-| 2.+ A>e¢ 26
(4) - y A’/ [Aji 0 (26)

7

which approximates the saturation nonlinearity by the
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first harmonic components with A4 denoting the
amplitude of the input sine wave. Then, the tracking
error is rewritten as

€1 (1) = ¥, 41 () = N(ADGCrpey (1) = Gupp (1) (27)

Further, it is arranged as
Yy gt (€)= G 4 (7) _
1+ N(4)GCyy
Ve () +diy (8) — Gy (1) + N(A)Cprer (1)
1+ N(A)GCpp
1-N(4)GCrp dy i (1)
1+ N(A)GCp 1+ N(A)GCpp

€y (1) =

e (D+ (28)

Since 0<N(A4)<l, A>e;, then when saturation
happens, the design principles in Theorem 1 are used on
N(A)Cgr and N(A)Cgp instead of Cgr and Cgg, where the
amplitude of N(4) depends on the prediction of the
exceeding range of the tracking error over the measuring
scope.

3.4 H,, controller synthesis

Through the previous analysis, it is know that for
slowly varying references, to meet the requirements
introduced in the beginning of Section 3, the design for
the feedforward control Cgr and feedback law Crg should
follow these two guidelines:

I S (29)
1+ N(A)GCpg ||,
and
=N GC |
1+ N(A)GCyg ||
gt (/1 +N(AGCrp),, |
- (30)

YOI+ N(AGCry), |,

According to these two items, the standard H.,
optimization method is employed to obtain the two
controllers.

1) The H, norm optimal feedback controller Cgg
can be calculated as

(1+ N(A)GCr) W,

31)
Cpp(1+ N(A)GCp) W, |

CFB

where W, and W, are weight functions designed for error
transfer function and control input, respectively. In actual
applications, W, is usually designed as a low-pass filter
to obtain good tracking performance under low
frequency. Besides, to avoid oscillation or saturation of
actuators, a small constant or the first order resonant part
of the system dynamics is employed to construct W,.

2) Based on the feedback controller Cgg, the
learning law Crr is optimized as

1= N()GW;Cee |
1+ N(4)GCyy |

min
CFF

(32)

['e]

where the low-pass filter W; is used in the optimization
process to guarantee that the H, norm of the error
transfer function maintains at a small level in the desired
frequency band. Ideally, the feedforward term Cgr should
be chosen as the inversion of the system transfer function
G(s), which then makes L(s) approach zero. However,
due to the non-minimum phase problem which may
appear in G(s), H, optimization method is used in this
work to obtain the approximate system inversion under
the premise of controller stability.

4 Simulation results

To thoroughly verify the performance of the
proposed control strategy, both
experiments are conducted on an
microscope system, which is an important imaging tool
on nanotechnology. To fully investigate the performance
of the designed CILC control strategy, it is firstly
compared with a standard feedback control law by some
simulation tests, and then employed in a practical AFM
system and the imaging results are compared with those
obtained from the currently utilized proportional-integral
(PI) control method.

For the simulation, the following model G(s)
obtained from a practical AFM platform is utilized [21]:

simulation and
atomic force

9.75x10%> +3.00x107s +1.81x10"?
s2+6.31x10%% +1.84x10% +1.06x10"3

G(s)= (33)

In addition, the system measurement range is [—0.5,
0.5]. Based on the above model setup, the following
low-pass filter ) is used in the H,, optimization process
to guarantee good tracking performance as

0.1s +2000
T == 5000 9
Moreover, W, is chosen as 0.1 to suppress the
magnitude of the control input. Through the calculation
algorithm (31), the feedback controller is obtained by
using the Matlab hinfsyn function.
Let the presented control system track the following
iteration-varying desired trajectories:
B [ . ( LA TR P .
V() =04 sin| —k_.+2_.(sin(2007¢) + 0.5sin(807r)),
’ 207 )
k=1, 2, - (35)

It is easy to see that the amplitude of this hybrid
sine wave signal varies with different iterations. In the
simulation, the normally distributed signal with mean of
0 and mean-square deviation of 0.1 is inserted into the
system as measurement noise. Then, some comparative
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tests for the proposed algorithm and the feedback control
are carried out in the simulation platform.

The simulation results are shown in Figs. 2 and 3.
Figure 2 depicts the tracking results during the 50th
iteration. It is evident that the output with the CILC
control is quite close to the reference, however, large
error exists when using the feedback control. To further
demonstrate the learning performance, the L, norm of the
tracking error is calculated and plotted in Fig. 3. The
results imply that the L, norm of the proposed algorithm
is kept at small values after some iterations, which is
much less than that of feedback control.

Fig. 2 Tracking result of 50th trial

Fig. 3 |e, (z)Hl2 and

e, (t)Hl2 in iteration domain

In addition, the relationship from time and iteration
to the tracking error is expressed by 3-dimensional
images, as shown in Fig. 4. Figure 4(a) shows the
tracking error of the presented approach, while Fig. 4(b)
shows the feedback control result. From this comparison,
it is known that in most of the iteration and time domains,
the former is smaller than the latter except at the
beginning several iterations. From the viewpoint of the
AFM operation, lower control error infers that a faster
scanning speed is possible, and it effectively decreases

the interaction between the probe and the sample, which
thus enhances the protection for both of them during the
imaging process.

Fig. 4 3-D diagram of tracking error (a) and feed back control
(b) in iteration and time domains

5 Application and analysis

After sufficient simulation test, the proposed CILC
control method is applied to an atomic force microscope
system and collect experimental results to further verify
its effectiveness. To implement comparative study,
experimental results of both the CILC controller and the
currently utilized control law are provided.

As shown in Fig. 5, the lab-developed AFM control
system consists of an AFM body (CSPM4000, Being

NANO Ltd.), a signal processing card, and a RTLinux

based controller. The basic working principle of the AFM
is to maintain the deflection of the probe constant by
tuning the displacement of a piezo-scanner in z-axis.
Under the command of the x and y motion controllers,
the probe is scanning across the surface of the sample in
a raster mode. Then, by recording x and y coordinates
and the control signal in z axis, the sample topography is
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Fig. 5 Scheme of RTLinux-based atomic force microscope control system

obtained indirectly. From the viewpoint of iterative
learning control, the sample surface is regarded as
unknown trajectories tracked by the piezo-scanner. Since
it is usually slowly time-varying and the scan is
implemented line-by-line, the references are iteration-
dependent and there is little difference between adjacent
trials. Therefore, the proposed CILC algorithm is utilized
to enable the piezo-scanner to track the sample surface
when the reference voltage of the laser detector is set as a
constant. In addition, when a sudden drop appears in the
sample, the probe loses contact with the surface, thus, the
sensor cannot observe the change of the output
accurately and then saturation occurs.

Note that in current AFMs, a PI controller is
employed to stabilize the piezo-scanner. Therefore, based
on the above experiment setup, the proposed CILC
control algorithm is compared with the currently utilized
PI controller. In the experiment, a one-dimensional
calibration grating (with period of 3 pm and step of
80 nm) is selected as the test sample. The other scanning
parameters are set as scanning range (5 pm), image
resolution (200%200) and scanning frequency (10 Hz, 10
lines per second).

Firstly, the setpoint is chosen as 0.4 V. After some
calculations, it is known that the surface variance of
80 mm is less than the range of the sensor measurement,
thus output saturation does not exist in this test. The
AFM images with the two control approaches are
depicted in Fig. 6, where Fig. 6(a) shows the scanning
result of the proposed CILC control, and Fig. 6(b) shows
the image obtained by PI control. It is shown that the
AFM image of the PI controller is blurred at the rising
and trailing edges, which implies that the PI controller
cannot yield satisfactory performance when the AFM
scans through the selected calibration grating. To clearly
demonstrate the advantages of the proposed technique,

the tracking error of the 100th iteration is shown in Fig. 7.

The results indicate that the designed CILC controller
suppresses the regulation error remarkably.
Subsequently, it is usually required to lower the

Fig. 6 AFM images of calibration grating without sensor
saturation: (a) CILC law; (b) PI control

Fig. 7 Tracking error of 100th iteration without sensor saturation
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setpoint of the AFM system to reduce the interaction
between the probe-tip and the sample for many soft
samples. Under this situation, the deflection of the
micro-cantilever at setpoint is small, which then
decreases the measurement range, thus the output
saturation tends to happen frequently. To validate the
control performance under this situation, 0.1 V is chosen
as the setpoint during the scanning process. Since the
output can not be negative, whenever the tracking error
is less than —0.1 V, the system then enters the saturation
range. Figures 8 and 9 present the experimental results
with this parameter setup. By comparing Fig. 8(a) with
Fig. 6(a), it can be seen that the obtained images from the
CILC algorithms for both with/without saturations are
similar, while for the images obtained from the PD
controller, the saturation situation is much worse as the
unclear edges indicted in Fig. 8(b). These results show
that when output saturation occurs, the imaging
performance of the PI control is degraded badly
(Fig. 8(b)), while the designed CILC controller still
keeps good AFM image quality (Fig. 8(a)). In addition,
the control error is regulated into the measurement range
with the proposed control law, however, it takes much
longer time for the PI controller (see Fig. 9).

Fig. 8 AFM images of calibration grating with sensor saturation:
(a) CILC law; (b) PI control

Fig. 9 Tracking error of 100th iteration with sensor saturation
5 Conclusions

1) A composite iterative learning control approach is
proposed to address the tracking control problem for
gradually varying references in iteration domain. The
current reference is broken up into two parts of last
reference and some disturbance signal, which is then
respectively addressed by the feedforward learning
controller and the feedback controller.

2) The presented learning controller is proven to be
convergent and the case of output saturation is strictly
considered during the design process. The designed
CILC strategy is finally utilized in an atomic force
microscope system, and both simulation and
experimental results are collected to demonstrate the
effectiveness of the proposed control algorithm.
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