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Abstract—This paper analyzes the dynamics of an amplitude
modulation atomic force microscopy (AM-AFM) system, and
designs a novel output feedback robust adaptive control (OFRAC)
law to improve the scanning performance of the AM-AFM
system. That is, a control-oriented reduced model is proposed
to approximate the mapping from tip-sample separation to
oscillation amplitude, whose accuracy is verified by experimental
results. Considering the facts that the parameters of an AM-
AFM system vary with different combinations of piezo-scanner
and cantilever as well as detected samples, and measuremen-
t saturation occurs frequently in dynamic AFM systems, an
OFRAC strategy for the piezo-scanner is designed to keep the
oscillation amplitude of the cantilever staying at the desired set-
point under various complex situation. It is shown theoretically
that the proposed control strategy pushes the system away from
the saturation state in finite time, and it ensures uniform ultimate
boundedness (UUB) result for the control error. The OFRAC
strategy is applied to a virtual AM-AFM system, and the collected
results clearly demonstrate that it presents superior imaging
performance for high-speed scanning tasks.

Index Terms—Atomic Force Microscopy, Saturation, Output
Feedback Control, Robust Adaptive Control, Lyapunov Tech-
niques.

I. INTRODUCTION

S INCE its invention [1], an atomic force microscopy
(AFM) has been widely utilized in nano-science and nano-

technology field. With the help of an AFM, we can charac-
terize the micro-world in nanometer scale [2], [3], or even
manipulate a single atom [4]. Subsequently, to reach atomic
resolution and to reduce the damage to probes or samples,
researchers have proposed the scheme of dynamic AFMs in
which the probe is excited by a sinusoidal signal. Later on,
the emergence of the amplitude modulation AFM (AM-AFM)
[5], which is also called as “tapping mode”, enhances the
performance of dynamic AFMs remarkably. However, with
the rapid development of nano-technology, current AFMs can
not meet the daily-increasing requirements in various research
areas including life science, material engineering, and so on.

The basic principle of dynamic AFMs is to regulate the
extended or contracted displacement of a piezo-scanner to
keep the separation between the measured sample and the
probe tip staying at the setpoint [6]. From the view point of
control, this is a typical error-based control system [7]. In
conventional AFM systems, the classical proportional-integral
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(PI) controller is often employed to adjust the position of the
sample to obtain the topography data. As generally known, the
PI control law presents such advantages as no requirements for
plant model, easy implementation in digital control systems,
and so on. Nevertheless, the controller can not reach high
enough resolution/speed for specific tasks, and its control
gains need to be tuned repeatedly for different probes or
distinct samples, which has always been a great challenge
for inexperienced operators. To achieve better performance, in
the literature, some advanced control methods, such as robust
repetitive control [8], iterative learning control [9], and so on,
have been proposed to increase system bandwidth and improve
robustness over various disturbance and measurement noise.
Unfortunately, most of the aforementioned methods are only
applicable for static mode AFMs.

With the increasing requirements of little or no harm to
samples, more and more focus has been put on the research
of dynamic AFMs. Recently, some investigation has been im-
plemented to explore the complex dynamics of the cantilevers,
and the obtained results can be roughly classfied as analytical
descriptions of AM-AFM [10], harmonic balance method [11],
and so on. However, these results are usually too complex to
be utilized for AM-AFM controller design and analysis. Due
to this reason, some researchers make efforts to improve the
imaging speed of AFMs directly through signal processing
techniques. For example, based on the construction of an
observer, some transient signal is employed in [12] for fast
imaging. More recently, Fang et al. propose a variable-speed
scanning (VSS) method in [13] for an AFM, which tunes
the scanning speed online based on the feedback information
to properly distribute imaging time along sample surface. As
shown by experimental results, this VSS method speeds up
the imaging rate successfully. Yet, these methods are mainly
empirical, whose performance heavily depends on the nature
of the measured samples.

So far, when utilizing an AFM instrument, an operator has to
spend much time in seeking out the best parameters to obtain
satisfactory imaging performance. To alleviate this burden,
some adaptive strategies have been successfully introduced
into AFMs to automate the parameter-adjusting task. For
instance, an adaptive control approach is propose in [14]
to eliminate the need of manually tuning control gains for
different scanning tasks, and in [15], Fang et al. design an
intelligent PI controller with relay-based tuning mechanism
for contact-mode AFMs, which successfully automates the
tuning procedure for the control gains. Apparently, these
methods largely decrease operation difficulty, especially for
those inexperienced manipulators. Unfortunately, they are only
available for contact-mode AFMs. Moreover, the output satu-
ration phenomenon, which happens frequently in AFMs due to
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measurement constraint, is usually neglected when analyzing
the performance of an AFM system. Yet, it is a generally
accepted fact that saturation degrades the performance of a
control system badly, and it thus needs to be considered
carefully [16], [17].

To overcome the drawbacks in current AM-AFM systems,
in this research, we study the behavior of an AM-AFM
system and propose an output feedback robust adaptive control
(OFRAC) strategy to enable an AM-AFM system to complete
high-speed scanning tasks. More specifically, since it is dif-
ficult to deduce the theoretical expression of the cantilever
oscillation amplitude in terms of tip-sample separation by
solving the complicated nonlinear equation, a control-oriented
reduced model is firstly presented for this mapping on the
basis of both theoretical analysis and experimental study.
Subsequently, an OFRAC strategy is proposed for an AM-
AFM system with the saturation problem fully considered,
whose performance is guaranteed by rigorous analysis. The
proposed method is then employed in a virtual AM-AFM
system, with the results clearly demonstrating the advantages
of the designed OFRAC strategy over current methods. The
contribution of the paper lies in the fact that it obtains a
practical control-oriented model with satisfactory accuracy,
based on which some output feedback control is proposed to
successfully solve sensor saturation and various disturbance
rejection problems for AM-AFMs, and thus to improve the
performance of high-speed AFMs remarkably.

The rest of this paper is organized as follows. In Section II,
the basic working principle of dynamic-mode AFMs is briefly
introduced. The overall system model is presented in Section
III. In Section IV, an OFRAC strategy is designed in detail,
which is utilized and sufficiently tested in a virual AFM system
in Section V. Finally, Section VI summarizes this research and
presents some plans for the future work.

II. DYNAMIC ATOMIC FORCE MICROSCOPY 
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Fig. 1. Schematic diagram of a dynamic AFM.

As shown in Fig. 1, a typical dynamic AFM is composed of
four parts: microcantilever/probe, laser detector, piezo-scanner
and digital controller. According to the types of feedback
signals, two major operating dynamic AFM modes have been
developed: amplitude modulation (AM)-AFM and frequency

modulation (FM)-AFM in which the oscillation amplitude
and resonant frequency is utilized as the regulated signal
respectively.

In the AM-AFM mode, the cantilever is excited by a sinu-
soidal actuating signal around its resonant frequency. When the
probe is brought close enough to the sample (within several
nanometers), its oscillating amplitude will be influenced by
the complex interaction force between the sample and the
probe tip. The varying amplitude can be measured by a laser
detector and a lock-in circuit, which is then employed as the
feedback signal. For this sample-scanning type AFM (see Fig.
1), the tip-sample separation is regulated by the piezo-scanner
displacement in the z-axis to keep the oscillation amplitude
of the cantilever at a given constant. At the same time, the
sample is moved in a raster scan mode with the piezo-scanner
in the x-y plane. Then, the x-y coordinates, together with the
corresponding displacement of the piezo-scanner in the z-axis,
are recorded to characterize the sample topography.

III. MODEL ANALYSIS AND EXPERIMENTAL
VERIFICATION

In this section, we will discuss the overall behavior of AM-
AFMs, including the piezo-scanner dynamics in the z-axis,
the relationship between tip-sample separation and cantilever
oscillation amplitude, and some other amplifier gains.

A. Piezo-Scanner Dynamics

A piezoelectric actuator is the most widely utilized mi-
cro/nano positioner due to its advantages of high resolution,
fast frequency response, and so on [18], [19]. However,
the structural vibration dynamics as well as the hysteresis
nonlinearity are the main factors that limit its further appli-
cations [20], [21], [22]. In the z-axis of a typical piezo-tube
scanner utilized in an AFM system, since the displacement is
comparatively small, the hysteresis behavior is not remarkable.
Hence, in this research, only the structural dynamics is con-
sidered when designing the control law. Compared with the
conventional second-order spring-mass-damper model [23],
the higher-order model in [24] is capable of capturing the
high frequency part of the piezo-scanner dynamics which can
not be neglected in dynamic AFM systems. Therefore, the
following transfer function is adopted to describe the piezo-
scanner dynamics [24]:

Y (s) = ks
bn−1s

n−1 + bn−2s
n−2 + · · ·+ b1s+ b0

sn + an−1sn−1 + · · ·+ a1s+ a0
U(s)

= ksG(s)U(s) (1)

where Y (s) and U(s) are the Laplace transforms of the
output displacement y(t) ∈ R and input voltage u(t) ∈ R
respectively, [a0, · · · , an−1]

T ∈ Rn, [b0, · · · , bn−1]
T ∈ Rn

are the system parameters, and ks ∈ R+ denotes the defor-
mation coefficient. Because only the output is measurable in a
dynamic AFM system, an observer is needed to estimate the
state of the system. Based on this reason, (1) is rewritten into
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the following state-space form:

ẋ1 = −an−1x1 + x2 + bn−1u

ẋ2 = −an−2x1 + x3 + bn−2u
...

ẋn−1 = −a1x1 + xn + b1u

ẋn = −a0x1 + b0u

y = ksx1 (2)

which can be further re-written into a more compact form as

ẋ = Ax+Bu

y = ksCx (3)

with the vector x ∈ Rn and the matrices A ∈ Rn×n, B ∈
Rn, C ∈ R1×n explicitly defined as:

x =
[
x1 x2 · · · xn

]T
A =


−an−1

−an−2 In−1

...
−a0 0 · · · 0

 , B =


bn−1

bn−2

...
b0


C =

[
1 0 · · · 0

]
. (4)

It is straightforward to show that the system in this form
is observable. Based on the property of AFM systems, it is
assumed that the plant order n is known, and the relative
degree is 1. Besides, the high frequency gain is assumed to
be positive in the sense that bn−1 > 0.

B. Relationship between Tip-Sample Separation and Oscilla-
tion Amplitude

When scanning a sample with an AFM, the tip-sample sepa-
ration varies with the sample topography and the piezo-scanner
displacement. The variation of the separation distance affects
the oscillation amplitude of the cantilever. Due to the complex
tip-sample interaction, it is difficult to obtain the exact function
from the tip-sample separation to the cantilever oscillation
amplitude which will be discussed in this subsection.
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Fig. 2. Installation angle of the cantilever: (a) parallel with the sample
platform; (b) with an angle α between them.

Ideally, the probe is equipped parallel with the sample
platform as shown in Fig. 2 (a). However, in actual AFM
systems, there usually exists an angle offset between them
(Fig. 2 (b)). Thus, the separation s(t) ∈ R between the sample
and the initial position of the probe can be expressed as

s(t) =
s0 − (y(t) + d0(t))

cosα
(5)

where s0 ∈ R denotes the initial distance, d0(t) ∈ R is
the sample topography which is considered as time-varying
disturbance entering into the system, y(t) ∈ R represents the
displacement of the piezo-scanner, and α ∈ R+ represents the
angle offset between the cantilever and the sample platform.

Generally, the cantilever dynamics is described by the
following Luré equation [25]:

p̈c +
ω0

Q
ṗc + ω2

0pc = (F0 cosωt+ Fts(s+ pc)) /m (6)

where pc(t), ṗc(t), p̈c(t) ∈ R are the position, velocity and
acceleration of the cantilever movement. F0 cosωt denotes the
actuating signal, m, ω0 and Q are the effective mass, natural
frequency and quality factor of the cantilever respectively, and
the nonlinear tip-sample interaction function Fts(s + pc) can
be expressed by the Maugis model [26].

In the AM-AFM system, the controlled signal is the oscilla-
tion amplitude. Thus, it is required to calculate the oscillation
amplitude of the cantilever zc(t) ∈ R in terms of the tip-
sample separation s(t), which is the stable solution of (6).
Unfortunately, it is difficult to solve the nonlinear differential
equation (6). Several analytical or semi-analytical approaches,
such as virial theorem [27], harmonic balance method [11],
and so on, have been proposed to describe the behavior
of the amplitude and phase offset. However, these methods
usually yield solutions involved with extremely complicated
expressions which are difficult to be employed for controller
design.

Considering the fact that the tip interacts with the sample
only when it vibrates towards the end of the negative cycle,
and summarizing many simulation/experimental results, it is
common practice that the cantilever will oscillate with the
free oscillation amplitude z0 ∈ R+ when the tip-sample
separation s(t) is greater than z0, and stop oscillating when
s(t) approaches 0. Thus, the following saturation function is
proposed for controller design without losing much accuracy:

zc(t) = sat0,z0(s(t)) + d1(t) (7)

where the saturation function is defined as

sat0,z0(s) =


z0 s ≥ z0

s 0 < s ≤ z0

0 s ≤ 0

(8)

and d1(t) ∈ R denotes the unmodeled bounded disturbance. To
further interpret this model, an experiment is implemented on a
Benyuan CSPM 4000 system, with the results provided in Fig.
3 to describe the relationship between tip-sample separation
and cantilever oscillation amplitude. In Fig. 3, the solid and
dashed lines represent the approaching and departing processes
respectively. It can be seen that when the tip-sample separation
exceeds its free oscillation value, the amplitude becomes a
constant. Besides, the amplitude of the cantilever is nearly
zero when the tip contacts with the sample. Therefore, the
reduced model (8) is able to describe the nonlinear separation-
amplitude relationship with much accuracy.

As stated previously, when saturation happens, either the
tip-sample interaction has no effect (free oscillation) or the
cantilever stops oscillating, thus the detected signal can not
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Fig. 3. Experimental results: oscillation amplitude vs. tip-sample separation.

exactly reflect the system error. For brevity, the case of free
oscillation is subsequently taken as an example to discuss the
performance of the presented control technique. Nevertheless,
the analysis is also valid for the case of stopping oscillation.
In this case, (7) turns into the following relationship:

zc(t) = satz0(s(t)) + d1(t) (9)

Furthermore, in the AM-AFM system, the deflection angle,
rather than the movement of the cantilever, is obtained by a
laser detector to facilitate subsequent feedback control. Then,
a lock-in amplifier converts this signal into the final oscillation
amplitude zp(t) ∈ R in the following form:

zp = kp
zc
L

(10)

where kp ∈ R+ is the detector gain, while L ∈ R+ represents
the cantilever length.

Based on the previous analysis, combining (3), (5), (9) and
(10) yields the overall model of the AM-AFM system:

ẋ = Ax+Bu

zp = satz1
(
k1(s0/ks − (Cx+ d0/ks))

)
+ d2 (11)

where z1 ∈ R+ denotes the upper bound of the saturation
function, d2(t) ∈ R is a bounded term containing both
unmodeled disturbance and measurement noise, k1 ∈ R+ is
an unknown positive parameter which is described by

k1 = kskp/(Lcosα), (12)

and A, B, C, kp, ks, L, and α have been defined previously,
which vary with different scanning tasks. Therefore, these
signals are assumed unknown during the subsequent controller
design. In addition, d0(t) represents the sample surface topog-
raphy defined in (5), which is always bounded.

Remark 1: For the system (11), though the top equation
is linear, the bottom equation for the output is very complex
as the measurement is contaminated by sensor saturation and
various disturbances, which then makes it very difficult to
regulate the output zp around some setpoint, especially when

only the saturated output is available for feedback. Therefore,
the subsequent part aims to propose an ambitious nonlinear
control law to address the sensor saturation and disturbance
rejection problems simultaneously in the context of output
feedback.

Remark 2: It should be noted that the active Q control
strategy [28], which can fasten the probe/cantilever response
remarkably, has been widely utilized in AM-AFM systems.
Therefore, it is reasonable in this research to describe the
behavior of the cantilever by a static function, because owing
to the employment of the active Q control algorithm, the
oscillation amplitude follows well with the variation of the
tip-sample separation.

IV. CONTROLLER DESIGN

In AFM systems, the oscillation amplitude of the cantilever
cannot be observed from the tip-sample separation when it
is beyond a known threshold (such as the step up or down
of the sample). In this section, a robust adaptive controller
is designed to regulate the cantilever oscillation amplitude
around the setpoint zr < z1 ∈ R. To this end, the control
error e(t) ∈ R is defined as follows:

e = zr − zp. (13)

Obviously, due to the saturation problem, it is very difficult
to analyze the behavior of the output zp(t). Based on this fact,
the following auxiliary output signal z′p(t) ∈ R is defined:

z′p = k1(s0/ks − (Cx+ d0/ks)) + d2, (14)

and the auxiliary error signal e′(t) ∈ R is correspondingly
defined as:

e′ = zr − z′p. (15)

Based on the previous definitions, the control error e(t) is
related to the auxiliary signal e′(t) in the following manner:

e = sate0(e
′) (16)

where the saturation function is defined as

sate0(e
′) =

{
e0 e′ ≤ e0

e′ e′ > e0
(17)

and
e0 = zr − z1 − d2 < 0. (18)

Based on the relationship of (16) and (17), e(t) can be re-
formulated as

e = γ(e′)e′ (19)

where

γ(e′) =

{ e0
e′

e′ ≤ e0

1 e′ > e0.
(20)

Therefore, based on (13), (15) and (19), the relationship of zp
and z′p can be calculated as:

zp = z′p + (1− γ)e′.

Because only the output zp(t) is measurable in AM-AFM
systems, an observer is first constructed to estimate the system
state for the subsequent output feedback controller.
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A. K-filter Construction
Based on the characteristics of the AFM systems, we

need to address the output feedback control problem with
uncertainties [29]. Therefore, an observer is needed to estimate
the unmeasurable system state [30]. To this end, the first
equation of (11) is rewritten as:

ẋ = Āx+
a∗ − k

k1
zp+(k−a∗)

(
s0 − d0

ks
+

d2
k1

)
+Bu (21)

where a∗ = [an−1, an−2, · · · , a0]T , and the matrix

Ā = A∗ − kζT1 (22)

with

A∗ =

0... In−1

0 · · · 0

 ,

ζ1 denoting the unit vector with the first element being 1. In
(21), the observer gain vector k ∈ Rn is selected suitably to
make the matrix Ā Hurwitz. That is, there exists a positive
symmetric matrix P satisfying:

ĀTP + PĀ = −I, P = PT , P > 0. (23)

Based on the system property, we define new states ξn, ξi, vi ∈
Rn, 0 ≤ i ≤ n− 1:

ξ̇n = Āξn + kzp
ξ̇i = Āξi + ζn−izp 0 ≤ i ≤ n− 1
v̇i = Āvi + ζn−iu 0 ≤ i ≤ n− 1,

(24)

then the state can be estimated as:

x̂ = − 1

k1
ξn +

1

k1

n−1∑
i=0

(ξiai) +
n−1∑
i=0

(vibi) (25)

˙̂x = Āx̂+
a∗ − k

k1
zp +Bu

= Āx̂+
a∗ − k

k1
z′p +

a∗ − k

k1
(1− γ)e′ +Bu. (26)

Furthermore, define estimation error εx = x− x̂, then

ε̇x = Āεx + (k − a∗)

(
s0 − d0

ks
+

d2
k1

)
− a∗ − k

k1
(1− γ)e′.

(27)
To facilitate the following analysis, we separate εx into two
parts of ε and εu, with

ε̇ = Āε− a∗ − k

k1
(1− γ)e′ (28)

and
ε̇u = Āεu + (k − a∗)

(
s0 − d0

ks
+

d2
k1

)
. (29)

As the latter term in the right-hand side of (29) can be bounded
by a known positive constant T :

|(k − a∗)

(
s0 − d0

ks
+

d2
k1

)
| < T,

then
εu ∈ Ωε , {εu : |εu| ≤ δε} (30)

where δε is defined as

δε = T

∫ t

0

eĀ(t−τ)dτ.

B. Robust Adaptive Controller Design

Based on the constructed filter, a robust adaptive controller
is designed to achieve desired performance. From (11), (14)
and (15), the auxiliary error dynamics can be calculated as:

ė′ = k1ẋ1 + k1ḋ0/ks − ḋ2. (31)

In addition, it can be deduced from (25) that

ẋ1 = x2 +
an−1

k1
zp − an−1

(
s0 − d0

ks
+

d2
k1

)
+ bn−1u

x2 = − 1

k1
ξn,2 +

1

k1
ξ(2)a

∗ + v(2)B + εx2 (32)

where

ξ(2) = [ξn−1,2, · · · , ξ0,2]
v(2) = [vn−1,2, · · · , v0,2]
εx2 = ζT2 εx = ε2 + εu2 . (33)

After some mathematical manipulations, the auxiliary error
dynamics (31) can be rewritten as

ė′ = − ξn,2 + (ωT − (1− γ)e′ζT1 )θ + vn−1,2k1bn−1

+∆+ k1ε2 + bn−1k1u (34)

where the signals v∗(2), B∗T are selected as the last n − 1

columns of v(2) and BT :

v∗(2) = [vn−2,2, · · · , v0,2]
B∗ = [bn−2, · · · , b0]T , (35)

and the signals ω, θ, and ∆ are explicitly defined as follows:

ω = [zpζ
T
1 + ξ(2), v

∗
(2)]

T

θ = [a∗T , k1B
∗T ]T

∆ = −an−1k1s0/ks + an−1k1d0/ks

−an−1d2 + k1ḋ0/ks − ḋ2 + k1εu2 . (36)

From the previous analysis, we know that bn−1 and k1 are
both positive, then (34) can be reformulated as:

ė′

bn−1k1
= − ξn,2

bn−1k1
+

ωT θ

bn−1k1
− (1− γ)e′ζT1 θ

bn−1k1

+
∆

bn−1k1
+ vn−1,2 +

ε2
bn−1

+ u. (37)

Assuming that the disturbance and the sample topography are
both bounded, it can be shown that ∆ is bounded as:

|∆| ≤ M

where M is a positive constant. To transform (37) into a more
compact form to facilitate controller design, we define the
following signals:

W = [−ξn,2 + sgn(e)M,ωT ]T

W1 = [−ξn,2, ω
T ]T

Φ =

[
1

bn−1k1
,

θT

bn−1k1

]T
(38)

where Φ is the unknown parameters vector. For a practical
AFM system, Φ is always bounded in the sense that:
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Φ ∈ ΩΦ , {Φ : Φmin ≤ Φ ≤ Φmax} (39)

where Φmin and Φmax are the infimum and supremum of Φ
respectively. After some mathematical manipulations, the error
system (37) can be expressed as:

ė′

bn−1k1
= WTΦ+

∆− sgn(e)M
bn−1k1

+ vn−1,2

+
ε2

bn−1
− (1− γ)e′ζT1 θ

bn−1k1
+ u (40)

where the fact of sgn(e′) = sgn(e) from (18), (19) and (20) has
been utlized. For system (40) with unknown parameter vector
Φ and bounded disturbance ∆, the following robust adaptive
control law is designed to deal with these model uncertainties:

u = u1 + u2 (41)

where the component

u1 = −WT
1 Φ̂− vn−1,2 − kee (42)

is introduced to deal with parameters uncertainty, with ke
denoting a positive, constant control gain, Φ̂ representing the
estimation of the unknown parameters vector Φ. To cease
parameter adaptation in this algorithm, the µ-modification
scheme is employed to design the update law [31] :

˙̂
Φ = ProjΦ̂

(
Γ(eW − µΦ̂)

)
(43)

where Γ is a positive definite diagonal matrix, the projection
function is defined as

ProjΦ̂(·) =

 0 for Φ̂ = Φmax and · > 0

0 for Φ̂ = Φmin and · < 0
· else

(44)

and µ is defined in the following form:

µ =

{
kµ(c1 − |e|) for |e| < c1
0 else (45)

where kµ is a positive constant, c1 < |e0| specifies the desired
error bound which is also a positive constant. From (44), it is
straightforward to conclude the following two facts:

Φ̂ ∈ ΩΦ =
{
Φ̂ : Φmin ≤ Φ̂ ≤ Φmax

}
Φ̃Γ−1ProjΦ̂(·) ≥ Φ̃Γ−1 · ∀· (46)

which will be utilized for the stability analysis. Subsequently,
the robust part of the controller is designed as:

u2 = − M2e

M |e|+ c2
ζT1 Φ̂ (47)

where c2 is a sufficiently small positive constant. After sub-
stituting the control law (41), (42), (43) and (47) into system
(40), we can obtain the closed-loop error system:

ė′

bn−1k1
= WT

1 Φ̃− (1− γ)e′ζT1
a∗

bn−1k1
+∆ζT1 Φ

− M2γe′

M |γe′|+ c2
ζT1 Φ̂ +

ε2
bn−1

− keγe
′ (48)

where the estimation error Φ̃ is defined as:

Φ̃ = Φ− Φ̂
˙̃Φ = − ˙̂

Φ. (49)

Remark 3: The introduction of the auxiliary signals z′p(t)
in (14) and e′(t) in (15) aims to provide some convenience
for the analysis of the system dynamics and to facilitate the
control design. However, since these signals are unavailable
due to the saturation problem, they are not utilized to construct
the control law. That is, the analysis for the dynamics of
the auxiliary signal e′(t) aims to provide some hints for
the controller design since it is very difficult to analyze
the dynamics of e(t) due to the presence of the saturation
component. However, the control law is only based on the
real error signal e(t).

C. Stability Analysis

In this section, the performance of the proposed control
algorithm is illustrated by two theorems which will be proven
afterward. Specifically, the analysis is implemented in two
steps. In the first step, it is shown that the presented controller
will push the system away from the saturation area in some
finite time, which is supported by Theorem 1. In the second
step, it is proven that when there is no saturation, the control
law drives the control error into the pre-defined error bound,
as explicitly stated in Theorem 2.
Theorem 1. For the saturation case of the system described
by (11), the control input (42) and (47), together with the
update law (43), ensures that the error system (40) enters the
set E1 , {e′ : |e′| < |e0|} in some finite time from a certain
saturation region which can be calculated rigorously.

Proof: When saturation occurs, the following facts of

e′ ≤ e0 = e = γe′ < 0 (50)

and
µ = 0 (51)

can be obtained from (17), (18), (19), (20) and (45), which
will be utilized for the subsequent analysis.

To verify the effectiveness of the above control laws in the
case of saturation, we define the following Lyapunov function
candidate:

V1 =
e0

bn−1k1
e′ +

1

2
Φ̃TΓ−1Φ̃ +

2

keb2n−1

εTPε. (52)

By utilizing the fact of (50), we can take the time derivative
of (52) to obtain

V̇1 =
γe′ė′

bn−1k1
− Φ̃TΓ−1 ˙̂Φ +

2

keb2n−1

(ε̇TPε+ εTP ε̇). (53)

Then, substituting (28), (43) and (48) into (53) yields:

V̇1 ≤
(
−keγ

2 − (1− γ)γζT1
a∗

bn−1k1
+

1

4
keγ

2

)
e′2

+
4(1− γ)2

keb2n−1

(
a∗ − k

k1

)T

PP

(
a∗ − k

k1

)
e′2

+ζT1 Φ̂c2. (54)
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where the fact of (51) has been utilized. From (54), we can
solve the inequality

g(γ) , −χ1γ
2−χ2(1−γ)γ+χ3(1−γ)2 ≤ −ζT1 Φmaxc2 + c3

c21
(55)

to obtain the attractive region, where c1 and c2 have been
defined previously while c3 is an arbitrary positive constant,
and the signals

χ1 =
3

4
ke (56)

χ2 =
ζT1 a

∗

bn−1k1
(57)

χ3 =
4

keb2n−1

(
a∗ − k

k1

)T

PP

(
a∗ − k

k1

)
(58)

are all positive. If the solution of (55) contains all values in
(0, 1), the global uniform ultimate boundedness(GUUB) result
can be obtained. Otherwise, by calculating (55), the infimum
of γ is defined as:

γ∗ , inf{γ ∈ (0, 1] : g(γ) ≤ −ζT1 Φmaxc2 + c3
c21

}. (59)

Then, define

ΩV1 ,
{
e′, Φ̃, ε | V1(e

′, Φ̃, ε) ≤ 1

bn−1k1

e20
γ∗

}
, (60)

it can be seen that ΩV1 is a positive invariant set. That is,
for any e(0) ∈ ΩV1 , we know that e′(t) ∈ ΩV1 when t > 0.
And as |e0| > c1, |e′(t)| will be less than |e0| in some finite
time when saturation happens. Additionally, define a set for
the auxiliary tracking error e′(t) and observer error ε:

Ωe′,ε ,
{

e′, ε | e0
bn−1k1

e′ +
2

keb2n−1

εTPε

≤ 1

bn−1k1

e20
γ∗ − 1

2
Φ̃T

maxΓ
−1Φ̃max

}
, (61)

then for any (e′, ε) starting from Ωe′,ε, in a finite time, e′(t)
will go into the set Ωe′ , {e′(t) : |e′(t)| ≤ |e0|}.

Based on the previous analysis, for the calculated attractive
region, the saturation will disappear and the controlled error
can be measured eventually. Afterward, e′ > e0 and γ = 1,
which implies the fact of e′ = e.
Theorem 2. When the saturation disappears, for the system
governed by (11), the control input (41), (42) and (47),
together with the update law (43), ensures that the error system
(40) enters the set E0 , {e : |e| < c1} in some finite time,
with c1 standing for the pre-defined allowable error bound
defined in (45).

Proof: To prove Theorem 2, we define the following
nonnegative Lyapunov function candidate:

V2 =
1

2

1

bn−1k1
e2 +

1

2
Φ̃TΓ−1Φ̃ +

(
k2 +

1

keb2n−1

)
εTPε

(62)
where k2 is a positive constant. After taking the time derivative
of (62), we obtain:

V̇2 =
eė

bn−1k1
− Φ̃TΓ−1 ˙̂Φ−

(
k2 +

1

keb2n−1

)
εT ε. (63)

Substituting (48) and (43) into (63), and utilizing (46) on the
resulting expression yields:

V̇2 ≤
(
−ke +

ke
4

)
e2 − µΦ̃T Φ̃ + µΦ̃TΦ

− k2ε
T ε+ ζT1 Φ̂c2. (64)

Subsequently, the facts of 0 < ζT1 Φ̂ ≤ ζT1 Φmax and

Φ̃T Φ̂ ≤ −1

2
Φ̃T Φ̃ +

1

2
ΦTΦ (65)

are further employed to obtain the following result:

V̇2 ≤ −3

4
kee

2 − 1

2
µΦ̃T Φ̃− k2ε

T ε

+
1

2
µΦTΦ+ ζT1 Φmaxc2. (66)

Particularly, when |e| ≥ c1, we have

V̇2 ≤ −3

4
kee

2 + ζT1 Φmaxc2. (67)

Therefore, by choosing ke such that

ke ≥
4

3

ζT1 Φmaxc2 + c3
c21

(68)

with c1, c2, c3 being defined previously, V̇2 can be further
upper-bounded as:

V̇2 ≤ −c3, ∀ |e| ≥ c1. (69)

Since V̇2 is continuous with respect to e(t), there exists a
constant 0 < c′1 < c1 such that

∀ |e(t)| ≥ c′1, V̇2 < 0. (70)

Note that c′1 < c1 implies that the system error |e(t)| will be
less than c1 in some finite time. From (45), it is straightforward
to conclude that when |e(t)| < c′1,

kµ(c1 − c′1) ≤ µ ≤ kµc1. (71)

Then, based on the definition of δc1 = c1 − c′1 > 0, (66) can
be rearranged as

V̇2 ≤ −k′V2 +
1

2
kµc1Φ

TΦ+ ζT1 Φmaxc2 (72)

where

k′ = min

(
3
4ke
1

2bn−1k1

,
1
2kµδc1

1
2λmax(Γ−1)

,

k2(
k2 +

1
2keb2n−1

)
λmax(P )

)
(73)

with λmax(∗) denoting the maximum eigenvalue of ∗.
By solving (72), we can obtain

V2(t) ≤
1
2kµc1Φ

TΦ+ ζT1 Φmaxc2

k′

(
1− e−k′t

)
+ V2(0)e

−k′t.

(74)
Therefore, V2(t) ∈ L∞. Consequently, from (62), we know
that e(t), Φ̂(t) and ε(t) are all bounded. Furthermore,

lim
t→∞

V2(t) ≤
1
2kµc1Φ

T
maxΦmax + ζT1 Φmaxc2

k′
. (75)
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That is, e(t), Φ̃(t) and ε(t) converge to the residual set
exponentially:

D =

{
e, Φ̃, ε :

1

2

1

bn−1k1
e2 +

(
k2 +

1

keb2n−1

)
εTPε+

1

2
Φ̃TΓ−1Φ̃ <

1
2kµc1Φ

T
maxΦmax + ζT1 Φmaxc2

k′

}
.(76)

V. ILLUSTRATIVE STUDY AND APPLICATIONS

To verify the validity of the proposed OFRAC strategy, we
fully test it in a virtual AM-AFM system [32]. Considering
that the AFM system presents very complex dynamics and
the phenomenon of sensor saturation usually badly degrades
the imaging quality, we first compare the performance of the
OFRAC strategy and the iterative learning control method
[9]. After that, the strategy is employed in the virtual AM-
AFM system to scan several types of samples, meanwhile, the
currently utilized PI method is also utilized to image the same
sample to provide some comparative study.

After considering the movement of the piezo-scanner in
the Z direction and based on some experimental study for
the hysteresis behavior, the following function is inserted to
describe the hysteresis behavior of the piezo-scanner:

v(t) =


−0.000135u(t)3 + 0.00374u(t)2 + u(t)− 0.00358,
u̇(t) ≥ 0;
−0.0000711u(t)3 − 0.00317u(t)2 + u(t) + 0.00358,
u̇(t) < 0,

(77)
where u(t) is the input voltage of the piezo-scanner, while v(t)
represents the system output caused by hysteresis behavior of
the piezo-scanner. Meanwhile, the following 3rd order model
is used to describe the dynamics of the piezo-actuator:

G(s) =
6.283× 104s2 + 1.935× 107s+ 1.168× 1013

s3 + 6.306× 104s2 + 1.837× 108s+ 1.063× 1013
,

which indicates the input-output differential equation as:
...
y (t) + 6.306× 104ÿ(t) + 1.837× 108ẏ(t) + 1.063× 1013y(t)

= 6.283× 104ü(t) + 1.935× 107u̇(t) + 1.168× 1013u(t),
(78)

where y(t) denotes the output of the system. After combing the
dynamics (78) with the hysteresis behavior (77), the following
improved model with hysteresis considered is obtained:
...
y (t) + 6.306× 104ÿ(t) + 1.837× 108ẏ(t) + 1.063× 1013y(t)

= 6.283× 104v̈(t) + 1.935× 107v̇(t) + 1.168× 1013v(t)

v(t) =


−0.000135u(t)3 + 0.00374u(t)2 + u(t)− 0.00358,
u̇(t) ≥ 0;
−0.0000711u(t)3 − 0.00317u(t)2 + u(t) + 0.00358,
u̇(t) < 0.

(79)
The high voltage amplifier and sensitivity are chosen as 16

and 9.7 × 10−9nm/V. The cantilever with the quality factor
of 40 is excited to oscillate with free amplitude of 30 nm
around its natural frequency of 300 kHz. The other setup of
the AM-AFM system can be referred to [32].

A. Comparative Study for the OFRAC Algorithm
Since the free oscillation amplitude of the cantilever is set

as 30 nm, a sinusoidal sample with amplitude of 35 nm is
utilized to make measurement saturation possible, the initial
offset is chosen as 2 nm, the set-point is set as 0.2 V, while
the resolution is chosen as 500 points per line.

To demonstrate the performance of the proposed OFRAC
strategy, we implement comparative study with the recently
developed iterative learning control law, since it is a typical
high-speed AFM controller [9]. Two kinds of samples, a
slowly-varying periodic sample and a dislocated sample, are
selected for the comparison. When simulating the iterative
learning control(ILC) algorithm, the real model of the system
(79), denoted as GPD, is utilized for the controller to achieve
best tracking result. Subsequently, the inversion-based ILC
filter is:

L = (GPDS)−1,

where
S = (1 +GPDGFB)

−1

is the sensitivity of the system, and GFB denotes a H∞ robust
feedback controller. Meanwhile, the roll-off ILC filter Q is
chosen to be one. The other parameters, such as scanning fre-
quency and resolution, sampling time, and the plant parameters
are all set the same for both ILC method and the proposed
OFRAC strategy .

Results for a sinusoidal sample with slowly-varying period:
We first test the performance of the designed OFRAC strat-
egy with a sinusoidal sample, whose surface topography is
expressed as:

di(t) = 35 sin [2π(500 + 5i− 5)t]

where di is defined as the sample topography of the ith line.
Fig. 4 shows the comparison of control performance for the

100th scanning line between the proposed OFRAC method
and the ILC approach, where the solid and dotted lines
represent the results of the OFRAC strategy and the ILC
method, respectively. No measurement noise is added to the
system in Fig. 4 (a), while ±2% white noise relative to the
setpoint is inserted into the laser detector in Fig. 4 (b). In
the OFRAC strategy, the tracking error is only based on the
current disturbance, and the system output is very close to the
setpoint. However, for the ILC approach, as the tracking error
is also related to that of the previous line, for such a sinusoidal
sample with slowly-varying period, the performance is getting
worse as time increases. From the previous results, it can be
seen that the proposed OFRAC strategy exhibits much better
response than the ILC method, which implies higher accuracy
for the obtained images, especially for high-speed scanning
tasks.

Results for a sinusoidal sample with dislocation: The sam-
ple topography in this case can be expressed as:

di(t) = 35 sin (1000πt+ φ)

where φ = −πi/18.
The obtained results are shown in Fig. 5. From these results,

it can be seen that the proposed OFRAC controller makes the
output converge to the setpoint with much less control error.
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Fig. 4. Comparison of control perfomance for slowly-varying periodic sample
(the 100th scanning line).

B. Application and Analysis

To further compare the proposed OFRAC controller with
the conventional PI controller, we implement both algorithms
and employ them in the virual AM-AFM platform [32].

Scan of a Square Sample: To investigate the performance of
the proposed controller, we first scan a square sample, whose
image is shown in Fig. 6, under different frequencies of 10
Hz and 100 Hz, respectively.

When the scan frequency is low (for example, 1 Hz),
both controllers can obtain accurate images for the sample.
However, as the scan frequency increases, it becomes more and
more difficult to obtain an image with high credibility, because
the controller will then have less time for each scanning point.
When the scan frequency is set as 10 Hz, the images of the
sample are given in Fig. 7, with the top and bottom results
obtained from the OFRAC controller and the PI controller,
respectively. Apparently, the OFRAC-based method obtains a
much more accurate image than the PI controller. To provide
more specific analysis from the control theory standpoint, the
control inputs of a single line for the two controllers are also
provided in Fig. 8. From these curves, it can be seen that
the input of the OFRAC controller follows very well with the
topography of the sample, thus it yields a reliable image for
the sample. However, the PI controller cannot track the edges
of the sample (from the control standpoint, an edge can be
regarded as a step-form signal exerted on the system), due
to the reason that the PI controller needs much longer time
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Fig. 5. Comparison of control perfomance for dislocated sample (the 100th
scanning line).

 

Fig. 6. A square sample.

to stabilize the system, therefore, when the scan frequency is
sufficiently high, at the edging points, the system is still in the
rising stage when the tip is moved to the next point.

To obtain more understanding for the OFRAC strategy, we
increase the scan frequency to 100 Hz to image the sample.
The obtained image is provided in Fig. 9, with results of both
controllers included to facilitate comparison. It is easy to see
that with the increasing of the scan frequency, the PI controller
can no longer yield an accurate image for the sample due to
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Fig. 7. Results of 10 Hz scan of a square sample.
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Fig. 8. Control inputs of a single line for 10 Hz scanning task.

the lower control bandwidth, yet the OFRAC controller still
captures well with the topography of the sample.

Scan of Other Samples: We fully test the performance
of the strategies with other samples, including sinusoidal
samples, triangular samples, and so on. However, due to space
limitation, only the scan results for a triangular sample, whose
image is shown in Fig. 10, are included here to demonstrate
the capacity of the proposed OFRAC strategy.

When the scan frequency is set high enough as 20 Hz, we

 

Fig. 9. Results of 100 Hz scan of a square sample.

 

Fig. 10. A triangular sample.

employ the proposed OFRAC strategy and the conventional
PI method to scan the triangular sample. The obtained results
are provided in Fig. 11 for the system outputs, and Fig. 12 for
the captured images of the sample. As demonstrated in Fig.
11, the output of the OFRAC strategy is much closer to the
setpoint than that of the PI law. When comparing the resulting
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Fig. 11. Comparison of system outputs.

 

Fig. 12. Results of 20 Hz scan of a triangular sample.

images shown in Fig. 12 with Fig. 10, it can be seen that the
OFRAC strategy yields an accurate image for the sample, yet
the PI controller makes the peaks and valleys of the sample,
respectively corresponding to the brightest and darkest zone
in the image, appear much wider than they really are.

Remark 4: To apply the proposed OFRAC control strategy
into a real-world AFM system, an AFM system with stable
amplitude-modulation mode and open structure is needed to
code and implement the control algorithm. For such an AFM

system, a PI controller is often utilized to enable sample scan-
ning. The application of the proposed OFRAC strategy mainly
involves to code/test the algorithm, and then utilize it to take
the place of the PI controller. Technically, the implementation
of the proposed OFRAC strategy requires almost no additional
conditions when compared with the original PI law, except
that more computation and memory resource is needed to
perform the calculation of the OFRAC algorithm, which is
usually not a big issue since a high-performance Digital Signal
Processor (DSP), or even a computer, is often utilized as the
kernel control unit in an AFM system. However, to embed
the proposed OFRAC strategy into a current AFM system,
the system needs to present open structure, so as to enable
input/output signals flow between the system and the coded
OFRAC strategy.

VI. CONCLUSIONS

This paper first obtains a control-oriented model for an AM-
AFM system, whose validity is supported by experimental
results. Based on the obtained model, an OFRAC strategy
is then designed to enhance the performance of the AM-
AFM system. As proven by rigorous analysis, the OFRAC
algorithm guarantees satisfactory performance even in the case
of measurement saturation. The proposed modeling/control
method is then employed in a virtual AM-AFM system, and
numerous scan results for various samples are collected to
show that the designed method exhibits superior performance
over the currently utilized strategies.

In the future work, this algorithm will be used on a dynamic
AFM to improve its imaging performance. Furthermore, some
filtering techniques will be proposed to utilize the dynamic
output of the piezo-scanner, intead of the control signal, to
obtain a more accurate image. Besides, the convergence of
the self-adaptive parameters will also be analyzed to enhance
the system performance. To further increase the positioning
accuracy, our future effort will also target to compensate for
the hysteresis of the piezo-scanner by combining the proposed
OFRAC strategy with some latest research results on hysteresis
compensation.
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[10] Ricardo Garcı́a, Rubén Pérez, “Dynamic Atomic Force Microscopy
methods”, Surface Science Reports, Vol. 47, pp. 197-301, 2002.

[11] Abu Sebastian, Anil gannepalli, and Murti V. Salapaka, “A Review of
the Systems Approach to the Analysis of Dynamic-Mode Atomic Force
Microscopy”, IEEE Trans. Control Systems Technology, Vol. 15, No. 5,
pp. 952-959, Sep. 2007.

[12] Deepak R. Sahoo, Abu Sebastian and Murti V. Salapaka, “Harnessing the
Transient Signals in Atomic Force Microscopy”, Int. J. Robust Nonlinear
Control, Vol. 15, No. 16, pp. 805-820, 2005.

[13] Yudong Zhang, Yongchun Fang, Jie Yu, and Xiaokun Dong, “Note:
A Novel Atomic Force Microscope Fast Imaging Approach: Variable-
Speed Scanning”, Review of Scientific Instrument, 82, 056103 (2011).

[14] Osamah M. EI Rifai, and Kamal Youcef–Toumi, “On Automating
atomic force microscopes: An Adaptive Control Approach”, Control
Engineering Practice, Vol. 15, No. 3, pp. 349-361, March, 2007.

[15] Xianwei Zhou, Xiaokun Dong, Yudong Zhang, Yongchun Fang, “Au-
tomatic Tuning of PI Controller for Atomic Force Microscope Based
on Relay with Hysteresis”, Proc. of the IEEE Conference on Control
Applications, Saint Petersburg, Russia, pp. 1271-1275, July 2009.

[16] Changyun Wen, Jing Zhou, Zhitao Liu, and Hongye Su, “Robust Adap-
tive Control of Uncertain Nonlinear Systems in the Presence of Input
Saturation and External Disturbance”, IEEE Transactions on Automatic
Control, 2011, 56(7): 1672-1678.

[17] T. J. Zhang, G. Feng, H. P. Liu, and J. H. Lu, “Piecewise Fuzzy
Anti-Windup Dynamic Output Feedback Control of Nonlinear Processes
with Amplitude and Rate Actuator Saturation”, IEEE Transactions on
Automatic Control, 2009, 17(2): 253-264.

[18] Santosh Devasia, Evangelos Eleftheriou, and S. O. Reza Moheimani,
“A Survey of Control Issues in Nanopositioning”, IEEE Trans. Control
Systems Technology, Vol. 15, No. 5, pp. 802-823, Sep. 2007.

[19] Yongchun Fang, Xiao Ren, Yudong Zhang, “Positioning Control S-
trategy Design for AFM Based Nanomanipulation Systems”, Proc.
of 2011 International Conference on Advanced Mechatronic Systems,
Zhengzhou, China, Aug. 2011, pp. 461-465.

[20] Yudong Zhang, Yongchun Fang, Xianwei Zhou, Xiaokun Dong, “Image-
Based Hysteresis Modeling and Compensation for an AFM Piezo-
Scanner”, Asian Journal of Control, Vol. 11, No. 2, pp. 166-174, 2009.

[21] Qinmin Yang, S. Jagannathan, and E. W. Bohannan, “Automatic drift
compensation using phase-correlation method for nanomanipulation”,
IEEE Transaction on Nanotechnology, Vol. 7, no.2, pp. 209-216, 2008.

[22] Xinkai Chen, Toshikuni Ozaki, “Adaptive Control for Plants in the Pres-
ence of Actuator and Sensor Uncertain Hysteresis”, IEEE Transactions
on Automatic Control, Vol. 56, No. 1, pp. 171-177, 2011.
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